<img height="1" width="1" style="display:none;" alt="" src="https://www.facebook.com/tr?id=880824774066981&amp;ev=PageView&amp;noscript=1">
Blog Home > Data and Tech > Will AI Replace FP&A Jobs? The Real Impact of AI on FP&A

Will AI Replace FP&A Jobs? The Real Impact of AI on FP&A

Table of Contents

As finance professionals navigate their organizations through the complexities of balancing growth and profitability, regulatory pressures, evolving markets and intense competition, the introduction of AI and its role in the FP&A world has become a topic of much discussion. 

While most finance teams I have spoken to agree that AI has the potential to help them in a significant waymany people still have questions. 

As we all experience the integration of AI in mainstream software, what will it mean for FP&A professionals’ jobs? 

And most importantly, will AI replace humans in Finance 

Short answer: No. 

For many decades, FP&A technologies have helped companies streamline processes and automate tasks, enabling finance professionals to shift their time away from the mundane preparation of data towards more value-added analysis and interpretation of financial results. 

The introduction of AI represents the next evolution of FP&A technology and a move towards more strategic contributions to corporate performance management. 

It not only continues the effort to automate traditionally less satisfying FP&A workbunow also assists with our analysis and interpretation of results, enhancing the strategic advisory contributions of finance professionals at all levels.  

In this blog, I’ll explore what the rise of AIespecially generative AIwill mean for FP&A professionals, and how it will help finance teams gain efficiencies and support better decision making. 

How Quickly Should I Expect AI to Impact My Daily Work?   

When speaking about the rapid growth of generative AIfrequently hear comparisons between the adoption of AI and the earlier widescale adoption of cloud computing. My findings were quite surprising when I looked deeper into this comparison. 

When we evaluate the history of cloud computing and look to the launch of the major cloud platforms, the timeline reveals the following: 

 Cloud Timeline

  A timeline of the adoption of the cloud 

  

When we apply a similar analysis to Generative AI platforms, we find much shorter timeline: 

 

Generative AI Timeline

A timeline of the adoption of generative AI 

 

What occurred with cloud technology over a 5-year span took just under 8 months for generative AI. If there was ever any doubt, AI is moving at a pace faster than anything we’ve ever seen before.  

We are seeing the integration of AI into just about every piece of technology we use, and forward-thinking FP&A software vendors have had AI on their roadmaps for quite some time. 

In finance, if AI hasn’t already started to help you in your daily activities, I think it’s fair to say that it will be happening any minute. 

Will AI Replace Humans in Finance?   

While AI technology has indeed replaced humans in some settingsmy firm belief is that finance will continue to be a human-centric field. It is unlikely, in my opinion, to displace finance professionals in any meaningful way because the core of the field requires: 

  • Complex decision-making: Decisions that are influenced by human judgmentwisdom and ethics, as well as social and emotional intelligence. 

  • Creativity and innovation: Essential for solving complex problems and driving strategic initiatives. 

  • Personalized learning and mentorship: Crucial during the early stages of a career, for developing future leaders and to all on an ongoing basis. 

Whether it’s developing and implementing new organizational strategies, identifying creative ways to enhance profitability, engaging with market analysts or developing the next generation of finance leadersit’s hard to envision AI replacing finance professionals. 

Finance professionals aren’t going anywhere. The question to ask regarding the widespread adoption of AI in finance isn’t which people will be replaced but rather, what work will be replaced. 

Where Should We Be Applying AI in FP&A?   

With over two decades of experience working with FP&A technology, I’ve witnessed and been part of some remarkable organizational transformations. I’ve seen cumbersome annual budgets be streamlined from months to weeks, time-consuming quarterly forecasts evolve into on-demand exercises performed multiple times a month and financial consolidations be reduced from several weeks to just a few days.  

Earlier generations of FP&A technology have successfully shifted the focus of finance from data preparation to data analysis.  

I believe the next quantum leap in finance will come from leveraging AI to augment the analysis capabilities of the FP&A team, with focus on three key areas: 

1. Generative AI and Natural Language Processing  

Natural Language Processing (NLP) is the subset of AI that enables humans to interact conversationally with technology. When combined with generative AI, it can generate complex answers in response to our requests. 

FP&A solutions equipped with generative AI capabilities such as Vena Copilot enable CFOs to ask questions in plain language directly to their source of financial truth. 

This provides them with real time insights that can eliminate the intermediary step of requesting analyses from their teams to prove their hypotheses. This allows the team to move directly to strategizing and addressing business issues where previously, it may have taken days or weeks to get there. 

2. Pattern and Anomaly Detection   

Pattern and anomaly detection are tools that can highlight data points that may warrant our attention. The patterns can sometimes be quite subtle, and the anomalies often lie deep within our data, making them difficult for the average person to spot. 

AI, in contrast can easily navigate large amounts of data to reveal these often-subtle trends and outliers to: 

  • Underline strategies and investments that the organization has already made  

  • Highlight new opportunities deserving organizational focus and investment 

  • Identify errors in budgets and forecasts 

At a minimum, the level of validation that anomaly detection can provide will significantly increase the accuracy of forecasts and budgets. 

3. Predictive Analysis and Predictive Modeling 

AI predictive modeling employs machine learning and deep learning to predict likely future outcomes. These models look at your current and historical data to determine the trends, relationships, and outliers and then apply new data against these learned patterns to deliver predictions on future results. 

The models are further refined through statistical analysis to increase the accuracy of their predictions. This methodology is essential for businesses looking to gain a competitive advantage through data-driven decisions. 

Predictive modeling also enables FP&A teams to generate and evaluate a broader range of planning scenarios much more quickly than ever before.

In addition, AI generated scenarios are not burdened with pre-conceived ideas or personal biases and may lead us to evaluate scenarios that we have previously dismissed. Exploring more complete universe of “what-if” scenarios during the planning process will lead to more optimal plans and strategies for businesses.  

The Final Word   

We all can agree that AI can produce impressive resultsbut its still important to remember that its intelligence is artificial. 

AI can be a source of significant competitive advantage for those who adopt it early and use its power effectivelyHowever, human intuition, experience and judgment remain the most critical components of what finance teams do. 

I can say with confidence that AI will continue its integration into the fabric of modern computing and that it will significantly enhance the way finance teams operate. 

FP&A professionals should learn how to work alongside AI technologies—both for the benefit of their organizations and for their own personal career development.   

For my final worddon’t see AI having the potential to replace humans in finance, but I do believe that finance professionals with AI experience and skills have the potential to displace those without them. 

the-cfo-show_square

Hear More From the Top Voices in Finance

The CFO Show is a weekly podcast featuring interviews with forward-thinking finance and business leaders.

Listen Now

About the Author

Kaz Takemura, Managing Director, FP&A Technology Services, ModelCom Inc

Kaz Takemura is the Managing Director of FP&A Technology Services at ModelCom Inc. He has worked with financial software for over two decades and has worked with most of the industry leading FP&A solutions in the market and is a proponent of Vena Solutions.

Read More

Illustration of AI brain in centre of the frame, with bar charts going up in the left background, and bar charts going down in the right background.
The Definitive Guide to AI in FP&A: Benefits, Use Cases and Risks Explained

Experts in finance, business and technology weigh in on the potential use cases of AI in FP&A and the benefits and risks that come along with it.

An illustration of a circuit board with the letters
How AI Can Power Finance Productivity—and Why Doing More With Less Matters

To keep up with business demands, today’s FP&A teams need to do more with less. Learn how generative AI can help unlock finance productivity.

An illustration of a brain surrounded by an Excel grid, Excel functions and various charts
How To Use AI for Financial Modeling and Forecasting

Learn the benefits of using AI for financial modeling and forecasting and see examples of how to do it, so you can get insights from financial data faster.

How To Supercharge Productivity in FP&A With Vena Copilot

Learn how Vena Copilot, your Complete Planning AI assistant, helps your FP&A team complete work that used to take hours in just minutes.